
Exploring SimCLR for Self-Supervised Learning:
CSC 422 Final Project

Logan Blake
Department of Computer Science
North Carolina State University

ldblake@ncsu.edu

Rob Clayton
Department of Computer Science
North Carolina State University

rtclayt2@ncsu.edu

Bennett Zug
Department of Computer Science
North Carolina State University

cbzug@ncsu.edu

Abstract

Self-supervised contrastive learning has emerged as a powerful alternative to large-
scale labeled pre-training. We evaluate the SimCLR framework on the STL-10
dataset, focusing on how its representations mature over time. We train a ResNet-18
backbone for 300 epochs and use linear probing and t-SNE visualizations to evalu-
ate the learned representations. Top-1 accuracy steadily improves to 89.6% after
200 epochs, with minimal further gains, reflecting the proportion of augmented
pairs for which an element is closer to its counterpart than to any other negative
sample. t-SNE visualizations show that our visualizations learned to separate
vehicle classes, but still retained significant overlap among animal classes. Linear
probing results further confirm this trend, showing high recall for vehicle classes
(e.g., "Car" at 60.75%) but lower performance for animals (e.g., "Dog" at 20.5%).
These findings demonstrate that contrastive pretraining can effectively learn useful
features even from limited data. However, the difficulty in distinguishing visually
similar animal classes suggests opportunities for improvement, such as through
domain-specific augmentations or balanced sampling. Overall, our findings rein-
force the growing relevance of self-supervised contrastive methods in data-scarce
domains such as medical imaging, where robust feature learning without exhaustive
annotation is critical.

1 Background

Labeling large vision datasets is time-consuming and costly. For example, the 14-million member
ImageNet image dataset required tens of years of annotation effort, translating to hundred of thousands
of dollars in expenses. In specialized fields like radiology, where every scan must be reviewed by
trained experts, the process is even slower and more costly, which limits how much data can be
collected for deep learning models.

Self-supervised learning (SSL) provides a solution to this challenge by utilizing unlabeled data.
Among SSL techniques, contrastive learning stands out as a powerful approach, training an encoder
to distinguish between similar and dissimilar examples without requiring explicit labels. SimCLR is
one of the simplest yet most influential SSL frameworks, demonstrating that high-quality, transferable
representations can be learned from unlabeled data through contrastive methods.

NC State CSC 422 Automated Learning and Data Analysis



Figure 1: Figure from the SimCLR paper (Chen et al., 2020), showing that using a non-linear
projection head significantly improves model accuracy by over 10% compared to no projection, and
also outperforms linear projection by an additional 3%.

The key idea of SimCLR (Chen et al., 2020) is to create "data augmentations," versions of the
unlabeled images with random crops and color jitters, and treat those augmentations as belonging to
the same class, attempting to maximize the similarity between their embeddings.

SimCLR uses three key elements for effective SSL pre-training:

• Complex augmentations: By creating multiple augmented versions of each image through
random crop and resize, color jitter, Gaussian blur, and horizontal flip, the model learns
more generalized representations rather than trivial image similarities.

• Projection head: A learnable, non-linear projection head is introduced before the loss
function, which significantly improves the quality of the learned representations. The
projection head consists of a two-layer multi-layer perceptron (MLP), where the hidden
layer uses a ReLU activation function. Figure 1 shows that the model accuracy improves
through introducing this nonlinearity.

• Large batch size: Including many labels per batch allows the model to see more a diverse
set of negative samples in each batch, with each batch more closely representing the data.

2 Methodology

The SimCLR (Chen et al., 2020) algorithm is quite a simple one. First, we generate augmen-
tations for each example x. The data augmentations used are a random crop and rescale, color
jitter, and random Gaussian blur. We apply these augmentations twice, to create two augmented
data examples generated from the same original image, x̃i and x̃j . In the code by Silva (2020),
these augmentations are generated by the get_simclr_pipeline_transform() function in the
ContrastiveLearningDataset class. The code also applies a horizontal flip and a grayscale filter
with probability p = 0.5 and p = 0.2 respectively.

Next, these augmentations are fed through an encoder to generate representation vectors. We use
ResNet-18 (He et al., 2015), though the algorithm allows for a variety of choices. This generates
representations hi = f(x̃i) = ResNet(x̃i). In the code, this is defined through the backbone
variable of the ResNetSimCLR class.

We then use a neural network to map these representations to a smaller space and introduce some
nonlinearity. We use an MLP to generate zi = g(hi) = W (2)σ(W (1)hi), with W (n) the weights
arrays and σ(·) a ReLU. In code, this projection head is defined through the line

nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.backbone.fc)

in the ResNetSimCLR class.

We then apply a contrastive loss function to the zi representations. The paper terms the loss used
NT-Xent, normalized temperature-scaled cross entropy loss. For a pair of two sampled augmentations

2



i, j, the loss is defined

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 I[k ̸=i] exp(sim(zi, zj)/τ)
, (1)

with exp(u,v) the standard cosine similarity u⊤v/∥u∥∥v∥, I an indicator function returning 1 when
k ̸= i and 0 otherwise. Conceptually, this loss function aims to minimize the distance between
positive pairs (augmented versions of the same image), and maximize the distance between negative
pairs (augmented versions of different images). For each minibatch of size N , the loss generates a
positive pair for each sample and considers all other pairs as negative examples. In the code, this loss
function is defined as info_nce_loss() in the SimCLR class. The final loss, L , is a summation of
the pairwise loss across all positive pairs in the minibatch. We then optimize the encoder network
f(·) to minimize this loss, and discard the projection head g(·) after training. The resulting model
can then be used to extract high-quality visual representations.

Figure 2 depicts the model architecture graphically.

maximize agreement maximize agreement

maximize disagreement

augmentations

CNN

MLP

CNN

MLP

augmentations

CNN

MLP

CNN

MLP

Figure 2: SimCLR model architecture

3 Experiment

We trained our model on the STL-10 dataset (Coates et al., 2011) using a ResNet-18 backbone.
Training was performed for 300 epochs using the Adam optimizer with a batch size of 256. The
learning rate was initially set to 3× 10−4 and scheduled with cosine annealing. Our implementation1

was based on a slightly modified version of the PyTorch code provided by Silva (2020). Experiments
were run on an NVIDIA GTX 1070 Ti GPU over approximately 10 hours.

Figure 3 shows the training loss and Top-1/Top-5 accuracy over the course of training. The accuracy
reported here reflects the proportion of augmented pairs for which an element of the pair is closer to
its corresponding counterpart than to any other negative sample. This accuracy measure is based on
the similarity of augmented pairs and is not related to class labels. The model converges steadily over
the first 200 epochs, after which improvements in accuracy plateau.

To better understand how the model’s representations evolved during training, we visualized the
learned embeddings at several epochs using t-SNE (van der Maaten and Hinton, 2008). We used a
labeled subset of the training data and a perplexity value of 50. The results are shown in Figure 4.

At epoch 1, the embeddings are largely unstructured, with significant overlap across classes. By
epoch 100, we observe the emergence of distinct clusters, which become more pronounced by epoch

1https://github.com/bennettzug/SimCLR

3

https://github.com/bennettzug/SimCLR


0 50 100 150 200 250 300
Epoch

1

2

3

4

5

6
Lo

ss

0 50 100 150 200 250 300
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Top-1 Accuracy
Top-5 Accuracy

Figure 3: Training loss and Top-1/Top-5 accuracy over 300 epochs.

Figure 4: t-SNE visualizations of learned STL-10 embeddings at selected training epochs (1, 100,
200, and 300), projected into 2D space. Each point represents a labeled image colored by class.

4



200. At epoch 300, some clusters are clearly well-formed, although some classes remain entangled.
Specifically, all of the vehicle related classes are in distinct clusters, but there remains considerable
overlap between the animal clusters, indicating that the model has learned to distinguish certain
classes better than others. Some of this difficulty might be because the unlabeled version of STL-10
contains more classes, and specifically more animals, than the labeled training variant we created the
visualizations on, which could be affecting the learned representations.

In addition to evaluating the learned representations using t-SNE visualizations, we performed a linear
probe evaluation on the learned embeddings. Linear probing involves training a linear classifier on
top of the representations, to assess their quality for downstream tasks. This allows us to gauge how
well the learned features generalize to a classification task. The results are summarized in Table 1.
These results seem to confirm what we see in the qualitative t-SNE data, showcasing that the vehicle
classes have relatively high recall values, with for example "Car" obtaining a recall of 60.75%. On
the other hand, some of the animal classes have more modest results, with "Dog" having a recall of
just 20.5%.

Class Precision Recall F1-Score
Airplane 0.5375 0.5637 0.5503
Bird 0.3411 0.3675 0.3538
Car 0.4880 0.6075 0.5412
Cat 0.2272 0.1588 0.1869
Deer 0.3911 0.3975 0.3943
Dog 0.2966 0.2050 0.2424
Horse 0.3617 0.4512 0.4016
Monkey 0.3128 0.3738 0.3405
Ship 0.5341 0.5575 0.5456
Truck 0.4024 0.2963 0.3413

Average 0.3892 0.3979 0.3898

Table 1: Classification Report for Linear Probe Evaluation on STL-10

4 Conclusion

This study effectively demonstrates the potential of the SimCLR framework for generating high-
quality, generalized visual representations through self-supervised learning. Training on the STL-10
dataset revealed notable progress in the organization of learned feature embeddings, as shown by
t-SNE visualizations. Initially, the embeddings were unstructured. However, as training progressed,
they shifted to form more distinct clusters, particularly for vehicle classes, while animal classes still
exhibited considerable overlap. This highlighted the challenges in distinguishing visually similar
image categories. By epoch 200, top-1 accuracy reached 86.7%, plateauing soon after at around
89.6%, indicating that the model had converged.

The linear probe evaluation supported these findings, with higher recall scores for vehicle classes,
such as "Car" (60.75%), compared to animal classes like "Dog" (20.5%). These results emphasize
the effectiveness of contrastive pretraining in learning valuable features from limited, unlabeled
data. However, the challenges in fine-grained animal classification suggest potential avenues for
improvement, such as introducing domain-specific augmentations or addressing class imbalance
through more balanced sampling between classes.

Looking ahead, future work could explore these avenues through the use of stronger or more targeted
augmentations, as well as scaling up to a deeper architecture such as ResNet-50, to test the robustness
of the trends observed. Additionally, the application of SimCLR to real-world datasets, such as
those in medical imaging or satellite photography, could provide valuable insights into its practical
applicability in data-scarce domains where data collection is costly, making efficient feature learning
even more critical. While further training with more of epochs could also be used, the plateau
exhibited after the first 200 epochs suggests that the training had already reached its optimal state with
the current setup. However, the proposed improvements could change this outcome. Furthermore,

5



the hardware used to train could be improved, as working with a home computer-level of processing
power is far more limited than the resources that large companies, such as Google, are utilizing to
efficiently train their models.

References
Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework

for contrastive learning of visual representations. In Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
1597–1607. PMLR.

Adam Coates, Andrew Ng, and Honglak Lee. 2011. An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research,
pages 215–223, Fort Lauderdale, FL, USA. PMLR.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778.

Thalles Santos Silva. 2020. Pytorch SimCLR: A simple framework for contrastive learning of visual
representations.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. In Journal of
Machine Learning Research, volume 9, pages 2579–2605.

6

https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v15/coates11a.html
https://proceedings.mlr.press/v15/coates11a.html
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:206594692
https://github.com/sthalles/SimCLR
https://github.com/sthalles/SimCLR
http://jmlr.org/papers/v9/vandermaaten08a.html

	Background
	Methodology
	Experiment
	Conclusion

